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Piron’s and Bell’s Geometrical Lemmas

Mirko Navara1

The famous Gleason’s Theorem gives a characterization of measures on lattices of
subspaces of Hilbert spaces. The attempts to simplify its proof lead to geometrical
lemmas that possess also easy proofs of some consequences of Gleason’s Theorem.
We contribute to these results by solving two open problems formulated by Chevalier,
Dvurečenskij and Svozil. Besides, our use of orthoideals provides a unified approach
to finite and infinite measures.
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1. INTRODUCTION

Let H be a separable real, convex, or quaternion Hilbert space. The collection
L(H ) of all its closed subspaces can be equipped with the partial order by inclusion
(inducing bounds 0 = {0}, 1 = H ) and orthocomplementation P⊥ = {x ∈ L(H ) :
x⊥P}. This way, L(H ) becomes an orthomodular lattice (see Svozil (1998) for a
detailed exposition). Instead of closed subspaces we may equivalently work with
the orthogonal projections onto these spaces. Gleason’s Theorem (Gleason, 1957)
characterizes measures on L(H ) for dim H ≥ 3. The most difficult part of its proof
deals with the case of a three-dimensional real vector space, H = R3. Attempts
were made to simplify this part of the proof. They lead to Piron’s and Bell’s
Geometrical Lemmas (Bell, 1964; Bell, 1966; Piron, 1976). These results enabled
a simplification of the original proof of Gleason’s Theorem (Cooke, 1985). Besides
this, some important consequences (e.g., the nonexistence of two-valued measures
on L(R3) which is crucial for rejection of the hidden variables conjecture) can be
obtained directly from these lemmas, without the need of proving the Gleason’s
Theorem in its full power.

Here we restrict attention to the principal case H = R3. We add another
geometrical lemma (Lemma 3.4) and show its use in the problems studied in
Chevalier et al. (2000). We refer to Dvurečenskij (1993) for a detailed historical
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introduction to the topic and to Chevalier et al. (2000) for motivation and basic
notions used in this paper. We repeat here just the necessary minimum of basic
terms.

2. BASIC NOTIONS

Let S(R3) be the unit sphere in R3. We denote by 
 (p, q) the angle of two
vectors p, q ∈ R3. Throughout this paper, we fix a vector p ∈ S(R3). It determines
an orientation of S(R3); for simplification we use the geographical terminology
and call p the north pole. The northern hemisphere (relative to p) is the set Np of
all q ∈ S(R3) such that 
 (p, q) ∈ (0, π

2 ). The equator (relative to p) is the set E p of
all unit vectors orthogonal to p. The latitude (relative to p) of a vector q ∈ S(R3)
is the angle ωq between q and the plane of the equator, i.e., ωq = π

2 − 
 (p, q).
A great circle in S(R3) is the intersection of S(R3) with a two-dimensional

linear subspace. For each q ∈ Np, there is a unique great circle, denoted by C(q),
which contains q and intersects with the equator E p at the points orthogonal to q.
Among the vectors of C(q), q has a maximal latitude.

The following tool was used:

Weak Piron’s Geometrical Lemma (Piron, 1976) Let v and q be two vectors in
the northern hemisphere such that v ∈ Np lies below C(q) (in the sense of latitude).
Then there is a vector s ∈ C(q) from the northern hemisphere such that v ∈ C(s).

To formulate further lemmas, we need the notion of measure. A mapping
m : L(R3) → [−∞, +∞] is called a measure iff

• m(0) = 0,
• m(A + B) = m(A) + m(B) whenever A, B are orthogonal subspaces

of R3.

A measure is called finite if its range is finite, otherwise, it is called infinite. (An
infinite measure attains exactly one of the improper values ±∞.) The kernel of a
measure m is

ker m = {P ∈ L(R3) : (∀Q ∈ L(R3), Q ⊆ P : m(Q) = 0)}.
If the range of a measure m is nonnegative, then ker m = m−1(0) and m is called
a positive measure; if, moreover, m(1) = 1, it is called a state.

Bell’s Geometrical Lemma (Bell, 1966) Let T and U be one-dimensional sub-
spaces of R3 and m a state on L(R3) such that m(T ) = 1, m(U ) = 0. Then

 (T , U ) > arctan 1

2 .
The Bell’s Geometrical Lemma can be strengthened as follows:

Lemma 2.1. Let T and U be one-dimensional subspaces of L(R3) and m a state
on L(H ) such that m(T ) = 1, m(U ) = 0. Then T ,U are orthogonal.
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We shall refer also to the following result for infinite measures (see also
Dvurečenskij (1993)):

Lemma 2.2. (Lugovaja-Sherstnev (Lugovaja, 1980)) Let m: L(R3) → [−∞,
+∞] be an infinite measure and let U and P be subspaces of R3 of finite measure,
dim U = 1, dim P = 2. Then U ⊆ P.

Two of the open problems formulated in Chevalier et al. ((2000)) were:

1. Prove Lemma 2.1 using only Weak Piron’s Geometrical Lemma.
2. Prove Lemma 2.2 using only Bell’s Geometrical Lemma.

We do this using a new additional lemma. Moreover, we generalize the results so
that they are applicable to both finite and infinite measures.

3. A GEOMETRICAL LEMMA

In this section, we add one simple geometrical lemma. Instead of measures,
we formulate it for orthoideals.

Definition 3.1. An orthoideal in L(R3) is a subset I such that

• A ≤ B, B ∈ I =⇒ A ∈ I ,
• A, B ∈ I , A ⊥ B =⇒ A ∨ B ∈ I .

Notice that an orthoideal need not contain the join of an arbitrary (nonorthog-
onal) pair of elements.

Example 3.2. If m : L(R3) → [−∞, +∞] is a measure, then ker m and
m−1((−∞, +∞)) are orthoideals.

Thus, orthoideals allow a unified approach to numerous results that were stated
separately for kernels of finite measures and for preimages of (−∞, +∞) un-
der infinite measures, e.g., Bell’s Geometrical Lemma may be formulated more
generally as follows (and proved analogously):

Lemma 3.3. Let I be a proper orthoideal in L(R3) containing subspaces U,P
with dim U = 1, dim P = 2. Then 
 (U, P⊥) > arctan 1

2 .

For two-dimensional subspaces of P, Q of R3, we define their angle, 
 (P, Q)
∈ [0, π

2 ] as the (nonoriented) angle of their normals.
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Lemma 3.4. Let I be an orthoideal in L(R3) containing two-dimensional sub-
spaces P, Q with


 (P, Q) = β ∈ (0, arctan 2].

Then there is a two-dimensional subspace S ∈ I such that


 (S, Q) ≥ β + arcsin

(
1

4
sin β

)
.

If β = arctan 2, then S may be chosen orthogonal to Q.

Proof: 2 Let us take a coordinate system x , y, z such that the north pole is
p = (0, 0, 1), P is in the plane z = 0 (the plane of the equator) and Q has a unit
normal vector n0 = (− sin β, 0, cos β). Thus Q intersects the unit sphere in the
great circle C(q0), where q0 = (x0, 0, z0), z0 = sin β, x0 = cos β =√

1−z2
0.

We construct a series q1, q2, q3, q4 of elements of the northern hemisphere
as follows: For i = 1, 2, 3, 4, we choose qi ∈ C(qi−1) such that the orthogonal
projections of qi−1, qi to P have an oriented angle π

4 . Explicitly, for i = 1 we
obtain

q1 =
(

x0

z0
z1,

x0

z0
z1, z1

)
=

(
z1

z0

√
1 − z2

0,
z1

z0

√
1 − z2

0, z1

)
,

where z1 is determined from the normalizing condition ‖q1‖ = 1:

z2
1 = 1

2
z2

0

(
1 − z2

0

) + 1
= z2

0

2 − z2
0

.

Using the rational function

g(t) = t

2 − t
,

we may write z2
1 = g(z2

0). Analogously, the z-coordinates zi of qi , i = 1, . . . ,4, sat-
isfy z2

i+1 = g(z2
i ) and they may be expressed using the compositions (not powers!)

gi of g as

z2
i = gi

(
z2

0

)
.

In particular,

g2(t) = g(g(t)) = t

4 − 3t
,

g4(t) = g2(g2(t)) = t

16 − 15t
,

2 During the work on this paper, Maple V was successfully used for symbolic calculations.
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z2
4 = g4

(
z2

0

) = z2
0

16 − 15z2
0

.

Checking the orthogonal projections of qi to P , we see that q4 is again in the plane
y = 0, but its x-coordinate is negative:

q4 = ( −
√

1 − z2
4, 0, z4

)
.

Due to our construction, C(qi ), i = 0, . . . ,4, lie in two-dimensional subspaces
belonging to I . In particular, the subspace S ∈ I containing C(q4) has a unit normal
vector

n4 = (
z4, 0,

√
1 − z2

4

)
.

The assumption β ≤ arctan 2 ensures that z2
0 ≤ 4

5 . The restriction of g to [0, 1] is
increasing and maps [0, 1] into itself; the same holds also for g4. Thus

z2
4 = g4

(
z2

0

) ≤ g4

(
4

5

)
= 1

5

and equality holds iff z2
0 = 4

5 . In particular,

z2
0 + z2

4 ≤ 1

which means that 
 (S, Q) = 
 (n0, n4) (not 
 (n0, −n4) which is greater than π
2 ),

and S, Q are orthogonal iff z2
0 = 4

5 , i.e., iff β = arctan 2. Using the estimate

z2
4 = z2

0

16 − 15z2
0

≥ z2
0

16
,

we obtain

z4 ≥ z0

4
= 1

4
sin β, 
 (S, Q) = 
 (P, Q) + 
 (P, S) ≥ β + arcsin

(
1

4
sin β

)
.

�

Using Lemma 3.4, we shall prove the following theorem:

Theorem 3.5. Let I be a proper orthoideal in L(R3) containing subspaces U, P
with dim U = 1, dim P = 2. Then U ⊆ P.

In view of Example 3.2, Theorem 3.5 is a common generalization of Lemmas
2.1, 2.2, and 3.3. We present two short proofs of Theorem 3.5, the first using Bell’s
Geometrical Lemma, the second using Weak Piron’s Geometrical Lemma.
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Proof: Using Bell’s Geometrical Lemma: There is a one-dimensional subspace
V ⊆ P orthogonal to U . We shall apply Lemma 3.4 to prove that Q = U ∨ V ∈ I
coincides with P . Let α be the supremum of all angles between two-dimensional
subspaces from I . Suppose that α > 0. If α ≤ arctan 2, we can find an angle β < α

arbitrarily close to α and two-dimensional subspaces in I with angle β. Lemma 3.4
gives an angle β + arcsin( 1

4 sin β) which is greater than α for a sufficiently large
β < α, a contradiction. The case α > arctan 2 is already excluded by the Bell’s
Geometrical Lemma 3.3 because 
 (Q, P) = 
 (Q⊥, P⊥) = π

2 − 
 (U, P⊥). The
only remaining case is α = 0. �

Proof: Using Weak Piron’s Geometrical Lemma: As in the previous proof, we
take the supremum α of all angles between two-dimensional subspaces from I . Let
us assume that α > 0. Lemma 3.4 excludes the case ≤ arctan 2. If α > arctan 2, we
take two two-dimensional subspaces P, Q1 ∈ I with 
 (P, Q1) > arctan 2. Weak
Piron’s Geometrical Lemma induces that there is a two-dimensional subspace
Q ∈ I such that 
 (P, Q) = arctan 2. The final statement of Lemma 3.4 gives
S ∈ I orthogonal to Q which means that I is not proper, a contradiction. So the
only possible case is α = 0. �

The most important corollary of the above results is the nonexistence of
hidden variables in L(R3); they correspond to two-valued states, i.e., states with
range {0, 1}.

Corollary 3.1. There is no two-valued state on L(R3).

This was the principal result of J. Bell (Bell, 1964, 1969). Alternative proofs
were presented by Kochen-Specker-type theorems which find a finite sublattice
of L(R3) admitting no two-valued state; the first construction of this kind was
given in (Kochen, 1967), nice overviews of recent simplifications can be found in
(Pitowsky, 1998; Svozil, 1998).

APPENDIX: THE RATIONAL SPACE

Let Q be the set of all rational numbers. We denote by L(Q3) the set of all
linear subspaces of Q3.
Open problem: Does L(Q3) possess a two-valued measure?

In contrast to L(R3), we cannot use Weak Piron’s Geometrical Lemma to
prove the nonexistence of such a measure:

Proposition 3.1. Weak Piron’s Geometrical Lemma does not hold for L(Q3).

Proof: We identify the north pole with (0, 0, 1). The unit vectors v = ( 4
5 , 0, 3

5 ),
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q = ( 3
5 , 0, 4

4 ) satisfy the assumptions of Weak Piron’s Geometrical Lemma. Thus
there is a vector s = (x , y, z) ∈ R3 satisfying the statement of Weak Piron’s
Geometrical Lemma. There are two such vectors differing only by the sign of
the y-coordinate; without any loss of generality, we restrict attention to the case
y > 0. We shall show that the one-dimensional subspace containing s does not
belong to Q3.

The elements of C(q) are orthogonal to the normal vector (− 4
5 , 0, 3

5 ). In
particular, for s ∈ C(q) we obtain

−4

5
x + 3

5
z = 0. (1)

The elements of C(s) are orthogonal to the normal vector n = (xn , yn , zn); its
coordinates are

zn =
√

x2 + y2,

xn = −xz√
x2 + y2

,

yn = −yz√
x2 + y2

.

As s is a unit vector, we may substitute√
x2 + y2 :=

√
1 − z2.

The orthogonality of p and n implies that

4

5
xn + 3

5
zn = 0,

i.e.,

4

5

−xz√
1 − z2

+ 3

5

√
1 − z2 = 0. (2)

We have two equations (1), (2) for variables x , z; they can be simplified to the
system

−4x + 3z = 0, −4xz + 3(1 − z2) = 0.

Its only positive solution is

z = 1√
2

, x = 3

4
z, y =

√
1 − x2 − z2 =

√
7

32
,

so y
z =

√
7

4 is irrational. �
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Thus, Weak Piron’s Geometrical Lemma cannot be used to answer the
problem.
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